
Return	of	the	CLI



API	Evangelist:	Akamai	
Worked	with	APIs	for	over	10	years	
Frustrated	with	un-usable	APIs	
Excited	by	CLIs



History
Interfaces through the ages

cc:	archer10	(Dennis)	103M	Views	-	https://www.flickr.com/photos/22490717@N02

* Evolution	of	UI	over	time	
*Understand	advantages	of	each	approach



Unix Shell
Command line tools

cc:	Christian	Cable	-	https://www.flickr.com/photos/67287915@N00

90’s:	Command	line	tools	to	perform	various	tasks  

	 ◦	 Relatively	friendly	to	techies 

	 ◦	 Unusable	by	end	users	
	 *	 Help	was	challenging 

	 ◦	 Chain	commands  



Web UI
Accessibility for everyone

cc:	Frances	Gunn	-	https://unsplash.com/@francesgunn?utm_source=haikudeck&utm_medium=referral&utm_campaign=api-credit

	 •	 Web	portals	became	a	much	more	popular	UI	over	time 

	 ◦	 Enabled	use	by	users	who	were	neither	developers	nor	sysadmins	
	 *	 Widgets	and	helpers  

	 ◦	 Portal	itself:	cannot	be	automated	
	 *		 Automation:	Integration	with	low	level	APIs	



APIs
Developers, configuration and code

cc:	baldiri	-	https://www.flickr.com/photos/47379017@N00

	 •	 APIs	allowed	external	developers	to	create	tools	to	interact	with	the	platform,	usually	alongside	a	web	portal 

	 ◦	 Requires	code	to	create	tools 

	 ◦	 Very	customizable 

	 ◦	 Can	be	automated  

	 ◦	 Not	very	friendly	for	sysadmins  



CLI
A third way to interact with a platform

cc:	asolomon16	-	https://www.flickr.com/photos/29602273@N00

	 •	 CLIs	evolved  

	 ◦	 Targeted	to	specific	use	cases	OR	API	wrappers 

	 ◦	 No	code	required  

	 ◦	 Automatable 

	 ◦	 Friendly	to	both	developers	and	sysadmins	
	 *	 Not	friendly	to	end	users  

	 ◦	 Perfect	for	DevOps	
Can	handle	your	authentication	and	other	environment	settings	for	you	
 
 



Cloud Computing
Create, configure and control

cc:	IntelFreePress	-	https://www.flickr.com/photos/54450095@N05

	 *	 Create/Spin	up	instances 

	 ◦	 Configure 

	 ◦	 Control	

Google,	Microsoft,	Amazon…	Akamai



System Administration
Operations and automation

cc:	simonov	-	https://www.flickr.com/photos/26209464@N00

Uses	in	system	administration  

	 ◦	 Automation	
	 ◦	 Sequencing	tasks	 	

*	Configuring	systems	
*	Integrating	systems	together



Suggestion
Bring back the CLI

cc:	cliff1066™	-	https://www.flickr.com/photos/28567825@N03

	 •	 Time	costs	
	 •	 Aggregation	
	 •	 Common	use	cases	
	 *		 API	Wrapper	
	 •	 Pain	points	in	UI	and	API	
	 •	 Authentication	



Costs
Your time, your customer's time

cc:	Mancha	Extraña	-	https://www.flickr.com/photos/62164357@N05

Successful	API	->	Many	users	
Difficult	interface	->	time	and	frustration	for	*ALL*	
Time	spent	on	CLI	->	multiplied	by	customers	using	it	

increases	loyalty	
In	your	best	interests		
focus	API	dev	efforts



Use Cases
Target customers' pain points

cc:	iProzac	-	https://www.flickr.com/photos/39265457@N07

Common	
	 *	Lack	of	automation	
	 *	User	input	
	 *	UI	limitations	
	 *	API	Challenges	

Akamai:	
	 *	Creating	new	properties	
	 *	Activating	properties	
	 *	Viewing	large	lists	of	items	
	 *	Adding	or	removing	hostnames	
	 …	business	logic/code



Focus
Just a few tasks

cc:	haglundc	-	https://www.flickr.com/photos/86676407@N00

Some	focus	on	API	Wrappers	
I'm	talking	more	about	use	case	based	CLIs	
Ideally	an	API	is	use	case	driven,	but…	

What	are	your	customers	doing?	
Where	are	they	getting	stuck?	
How	can	you	improve	their	experience?	

Akamai:	
	 Want	to	create	properties	
	 Update/modify	specific	pieces	
	 Activate	and	deactivate	
	 Delete	

API	has	tens	of	endpoints	
Focused	on	just	a	few



Wrap Calls
Create a user friendly interface

cc:	erika	g.	-	https://www.flickr.com/photos/64406396@N00

On	the	other	side	are	CLIs	that	wrap	the	API	interface	

Authentication	
Friendly	naming	
Automatable	

User	friendly	->	to	people	comfortable	with	a	command	line



CLI Examples
From across the industry

cc:	...-Wink-...	-	https://www.flickr.com/photos/68842954@N00

Examples	of	CLIs	out	in	the	wild.	
Some	are	API	wrappers	
Some	are	use-case	based	tools.	



Docker
Container control

cc:	Izabella.R	-	https://www.flickr.com/photos/33280166@N02

Docker	is	a	well	known	container	technology	
It's	like	a	small	virtual	machine	with	very	little	overhead	
No	need	to	tune	memory/size	
Create	containers	which	can	be	reused	
Used	by	some	development	teams	to	enforce	consistency	

Surprising:	It	is	a	CLI/API	system	
The	CLI	is	a	blend	of	wrapper	and	use	case	based	tasks	

Let's	take	a	look	at	a	couple	of	examples.			
API	interaction	first	and	CLI	version	second



API Interaction

cc:	aquopshilton	-	https://www.flickr.com/photos/76804652@N02

Most	docker	interaction	is	done	via	the	CLI,	but	there	is	a	backend	API.			
"docker	run"	is	a	great	example	of	a	use-case	based	CLI	command	
	 First	create	the	container	
	 Then	start	it	
	 Wait	until	it	completes	
	 Show	the	logs	

In	this	case	we're	using	the	API	
	 Read	the	documentation	
	 Set	curl	flags	appropriately	
	 Run	the	commands	
	 No	client	to	handle	errors	
	 No	command	line	help



CLI Interaction

cc:	Andi	Sidwell	-	https://www.flickr.com/photos/25905870@N00

I'd	show	the	output	of	docker	run	—help	but	it's	pretty	long.			
The	number	of	options	and	parameters	is	astounding	

I	think	this	example	speaks	for	itself.			
The	CLI	is	the	most	friendly	way	to	interact	with	docker		
Still	it	has	some	excellent	shortcuts	

UX/DX	should	be	a	driver	for	a	CLI	as	it	is	here	

Try	the	newer	native	docker	client.		Check	out	what	people	are	doing	with	it.	

Well	designed	CLI	for	the	purpose.



Heroku

cc:	Lachlan	Hardy	-	https://www.flickr.com/photos/98983159@N00

Heroku	is	a	Platform	as	a	Service	company	

Create/test	your	code	on	your	system	
Push	it	into	the	cloud	

They	have	a	CLI,	an	API	and	a	Dashboard	
1/3	of	our	users	use	the	CLI	only	
2/3	use	the	CLI	and	dashboard	
a	very	small	amount	only	use	the	dashboard	only	or	the	backend	APIs	

CLI	covers	almost	all	API	functionality	
Designed	to	be	the	main	interface	

Makes	sense	that	they	would	use	the	CLI	for	this	functionality	
Most	people	are	working	in	the	command	line	already	
Provide	a	usable	CLI	based	on	workflows	

Good	documentation	and	tutorials.	
Give	it	a	try	to	see	what	it	feels	like.



AWS

cc:	Scottish	Government	-	https://www.flickr.com/photos/26320652@N02

Amazon	is	a	huge	purveyer	of	APIs.		
Everything	has	an	API	
Most	of	their	systems	are	built	API/CLI	
Internal	mandate	for	feature	parity	
CLI	is	not	designed	for	use	cases	
Does	handle	authentication	and	other	configuration	

They	have	zillions	of	APIs	
Let's	take	a	look	at	S3	



API Interaction

cc:	Ruth	and	Dave	-	https://www.flickr.com/photos/95142644@N00

CLI	calls	don't	wrap	multiple	API	calls	
But	API	calls	are	complicated	

Won't	go	over	all	the	pieces	here	
The	API	requires	an	inordinate	amount	of	work	

Can	you	use	it?		Sure.	
Would	you	want	to?		Probably	not	without	an	interaction	library.



CLI Interaction

cc:	kevin	dooley	-	https://www.flickr.com/photos/12836528@N00

aws s3 cp file.txt s3://my-bucket/

Here,	I'll	make	this	one	easy.	

That's	a	user	interface	I	can	understand.	

Note:	
	 Most	interaction	with	AWS	needs	Business	Logic	
	 Many	things	can	be	done	with	the	console	
	 Documentation	can	be	frustrating	

You	can	use	the	CLI	to	do	a	great	number	of	things	in	AWS.	
Spin	up	new	EC2	instances.	
Launch	a	Lambda	function.	
Pretty	much	anything	in	AWS.			
Sometimes	the	console	is	easier	though.



Box
Bulk queries

cc:	netzanette	-	https://www.flickr.com/photos/67212136@N00

Box	just	last	week	came	out	with	their	CLI	

The	CLI	largely	echoes	the	functionality	of	the	API,	but	it	allows	bulk	processing.	

Being	able	to	mass-delete	or	update	files	on	the	system	enables	automation.	

Most	people	will	use	the	dashboard.	

Hooking	the	CLI	into	your	publication	process.



Other CLIs
• Google 
• Nexmo 
• Azure 
• Zapier 
• Others...

cc:	włodi	-	https://www.flickr.com/photos/19716902@N00

I	cannot	possibly	list	all	of	the	companies	with	CLIs	out	there.			
Most	of	them	are	the	"big	boys"	
Smaller	companies	are	adding	this	interaction	model	
I	personally	prefer	platforms	with	both	an	API	and	CLI	

Many	products	have	a	strong	dashboard	
Great	for	one-time	actions	
Easy	to	understand	
Widgets	and	helpers	

but	

It's	not	automatable	
Can't	incorporate	it	into	CI/CD	
It	can't	be	an	integrated	part	of	your	process



Akamai Web Portal
Property Manager UI

cc:	aftab.	-	https://www.flickr.com/photos/72093892@N00

Luna,	Akamai	Web	Portal	
Big	improvement	over	the	PS	world



ACCESSIBLE TO EVERYONE
No command line experience

cc:	biblioteekje	-	https://www.flickr.com/photos/7546281@N04

Anyone	can	use	it	
Widgets	and	helpers	
Visual	context	
Obviously,	no	code



FULL FUNCTIONALITY
Create, edit, activate, delete

cc:	daveynin	-	https://www.flickr.com/photos/44124370018@N01

Luna	enables	all	property	functions	
Property	management	plus	account	products	
Reporting	available



FRIENDLY
Widgets and helpers

cc:	jesse.millan	-	https://www.flickr.com/photos/7108389@N05

Portal	maintains	the	user's	context	
Understands	the	business	logic	
Navigation	through	properties	
Configuration	of	features



Property Manager API
Incredibly powerful interface

cc:	Anupam_ts	-	https://www.flickr.com/photos/50949827@N03

Property	Manager	API	(PAPI)	
Created	to	allow	customers	programmatic	access	to	property	functions	
Fully	functional,	can	do	everything	PM	can	do	



Design Choices
Functionality, not usability

cc:	Stuck	in	Customs	-	https://www.flickr.com/photos/95572727@N00

PAPI	was	designed	for	full	functionality	
Very	strong	REST	methodology	
Individual	items	are	individually	addressable	
Possible	to	do	just	about	anything	but…	

The	system	wasn't	designed	for	usability	
Designed	for	functional	completeness	



Required Knowledge
Internal business logic

cc:	Shawn-Tron	-	https://www.flickr.com/photos/32020938@N07

Accounts/groups/properties/hostnames	
Hierarchy	is	needed	to	work	with	PAPI	
Internal	property	ID	is	required



Frustration
Steep learning curve

cc:	Aaron	Burson	-	https://unsplash.com/@aaronburson?utm_source=haikudeck&utm_medium=referral&utm_campaign=api-credit

In	order	to	use	the	API	
Must	find	the	property	(new	search	endpoint)	
Understand	group	and	contract	
Make	several	calls	to	perform	a	single	action



Akamai CLI
Package manager for Akamai commands

cc:	Erik	Eastman	-	https://unsplash.com/@erikeae?utm_source=haikudeck&utm_medium=referral&utm_campaign=api-credit

PAPI	not	the	only	function	
	 GTM	
	 Purge	
	 cloudlets	
Created	the	Akamai	CLI	package	manager	
	 Multiple	commands	
	 Languages	
	 Consistent	interface	
	 Installation,	updating	



Extensible
Support for multiple languages

cc:	quinn.anya	-	https://www.flickr.com/photos/53326337@N00

CLI	system	is	extensible	
New	packages	created	all	the	time	
CLI	is	in	Go	for	precompiled	binaries	
Packages	are	in	Node,	python,	and	go



Open Source
Community supported

cc:	opensourceway	-	https://www.flickr.com/photos/47691521@N07

New	development	model	
Packages	are	open	source	
Pull	requests	and	issues	in	github



Akamai CLI Property

cc:	jasonwryan	-	https://www.flickr.com/photos/41804339@N00

CLI	property	-	devops	focus	
Entire	life	cycle	of	a	property	
Abstracts	business	logic	
Can	be	chained	together



Functions
Based on common customer uses

cc:	Luca	Bravo	-	https://unsplash.com/@lucabravo?utm_source=haikudeck&utm_medium=referral&utm_campaign=api-credit

Create	
Update	
Activate/Deactivate	
Delete	



Configuration as Code
Continuous Integration and Deployment

cc:	pegazuz66	-	https://www.flickr.com/photos/78216159@N05

Jenkins	example	
	 Configuration	in	an	SCM	
	 Commits	trigger	build	
	 Create	temporary	property	
	 Update	with	new	rules	
	 Activate	property	
	 	 <perform	your	tests>	
	 Delete	property



Smooth
Abstracts away business logic

cc:	Theen	...	-	https://www.flickr.com/photos/57768536@N05

CLI	commands	are	done	with	property	name	
	 <shoes.departmentstore.com>	
No	need	for	hierarchy	
Works	when	properties	move



CLI Guidelines

cc:	Leo	Reynolds	-	https://www.flickr.com/photos/49968232@N00

Guidelines	for	CLI	
Check	your	mirrors	

Consider	API-CLI-UI	parity	
	 Important	for	wrappers	
	 Use	case	based	maybe	no



Architecture

What goes where?
cc:	aresauburn™	-	https://www.flickr.com/photos/9993075@N06

Server

API

CLI

UI

How	to	structure	
Server	in	the	middle	
Chain	where	UI	calls	CLI	
Best:	API	in	front	of	all	clients



Help
Help screen, getting started

cc:	ivanatman	-	https://www.flickr.com/photos/9299981@N04

Humans	using	CLI	
Consistent	interface	
Help	screens	
Examples	and	tutorials	
First	class	product



OS Support
Meet your customers where they are

cc:	Tau	Zero	-	https://www.flickr.com/photos/7444180@N08

Created	many	tools	
Linux/Mac	support	
Customers	use	Windows	
Wrapper	supports	linux,	mac,	windows	
Test	on	all	platforms



Patterns
Common Unix commands

cc:	stachelig	-	https://www.flickr.com/photos/55438345@N00

Study	git	and	docker	
Command/subcommand/flags/target	
Look	at	common	unix	commands	
Don't	reinvent	the	wheel



Environment
Easy access to configuration

cc:	Pavel	ahmed	-	https://www.flickr.com/photos/40913053@N08

Advantage	to	CLI	is	environment	
Easy	authentication	
Configuring	behavior	
Allow	consistency	for	multiple	runs



Future
Where do we go from here?

Soapbox	
	 APIs	should	be	usable	
	 Most	of	them	are	not	
	 Fixing	them	is	hard	
CLI	for	API	wrapping	is	useful	for	environment	
Consider	case	based	CLI	tools	
	 Find	customers	pain	points	with	UI	*and*	API	
	 Create	interfaces	that	ease	those	issues	
	 Understand	customers'	use	cases	(like	devops)	
	 Allow	customers	to	choose	between	CLI	and	API


